
\
PERGAMON International Journal of Heat and Mass Transfer 31 "0888# 1252Ð1263

9906Ð8209:88:, ! see front matter Þ 0888 Elsevier Science Ltd[ All rights reserved
PII] S 9 9 0 6 Ð 8 2 0 9 " 8 7 # 9 9 2 1 9 Ð 1

2!D numerical modeling of heat transfer between two sliding
bodies] temperature and thermal contact resistance

B[ Salti�\ N[ Laraqi
Universite� Paris VI\ URA CNRS 768\ LMP\ Equipe {Transferts Thermiques|\ T[55\ BP[ 059\ 3!Place Jussieu\

64141 Paris Cedex 94\ France

Received 12 January 0886^ in _nal form 00 September 0887

Abstract

A three!dimensional numerical model using the _nite volume method was developed to calculate the steady!state
temperatures and the thermal contact resistance between two sliding bodies] one is rough and stationary\ the other is
smooth and moving at a velocity V[ The roughness is represented by square!shaped asperities characterized by a
parameter o[ Heat transfers through interstitial gaps are not taken into account[ The numerical methodology was
particularly studied in order to reduce the computation time and obtain accurate results[ This model was validated by
comparison of results with those of an analytical solution[ Þ 0888 Elsevier Science Ltd[ All rights reserved[
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Nomenclature

Aa apparent contact area of an elementary cell
Ar real contact area of an elementary cell
e width
e? width of the modeled domain
h heat convection coe.cient
h? heat conductance
k thermal conductivity
l half!width of the real contact area
L half!width of the apparent contact area
N number of meshes
q heat ~ux per unit area
Q heat ~ux " � q"1l#1#
R thermal resistance
T temperature
Te ambient temperature
T� dimensionless temperature "�"T−Te#"qL:k##
V sliding velocity
V� dimensionless velocity "�V"1L:a##
x\ y\ z space coordinates[

� Corresponding author[

Greek symbols
a thermal di}usivity
d asperity height
D space step
o relative contact size "�zAr:Aa � l:L#
cc dimensionless constriction resistance "�RcskzAr#
v relaxation parameter[

Subscripts
a asperity
c contact
cs constriction
i\ j\ k indexes for meshes in the x!\ y!\ z!directions\
respectively
l large
t thin
0\ 1 body "0# or "1#[

Abbreviations
1!D two!dimensional
2!D three!dimensional
C coupled bodies
UC uncoupled bodies[
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0[ Introduction

Temperature is an important parameter for problems
of friction ð0\ 1Ł[ The investigation of temperatures by
analytical solutions or numerical models depends on the
adopted equations for characterizing the heat transfer at
the body:body contact[ Experimental studies ð2Ð4Ł con!
cerning dry friction\ have shown that there exists a dis!
continuity of temperature at the interface of sliding
bodies[ This jump of temperature is a conclusive indi!
cation of the presence of a thermal contact resistance Rc[
For stationary solids Rc has been widely investigated ð5Ð
01Ł[ The relative mobility of bodies modi_es the con!
striction of the heat ~ux lines and subsequently Rc value[
Experimental studies ð3\ 4\ 02Ł show that Rc decreases
with the increase of velocity[ This tendency has been
con_rmed by analytical solutions ð03\ 04Ł where a semi!
in_nite solid subjected to heat sources is considered[
Another analytical solution\ based on a semi!in_nite
body subjected to numerous rectangular or squared heat
sources is also proposed ð05Ł[

The proposed analytical solutions consider a single
smooth body subjected to a uniform heat ~ux[ In practice\
heat ~ux distribution at the real contact area is non uni!
form due to the presence of the asperity of the other solid[

In this paper\ a three!dimensional numerical model
that considers two bodies in sliding contact was
developed[ The modeled geometry consists of two bodies]
one is smooth and moving at a velocity V\ the other is
_xed and comprises numerous asperities shaped as squa!
res which are uniformly distributed over the contact
plane[ For the same values of the real and apparent
contact area\ a square!shaped asperity is equivalent to a
circular one ð00Ł[

In this study\ we are interested in the constriction
phenomenon within solids\ heat transfers through inter!
stitial gaps are not taken into account[ The steady!state
temperatures and dimensionless thermal contact resist!
ance cc were calculated in terms of two parameters
characterizing the surface "o# and the displacement "V�#[
Small values of o down to 9[94 "Ar:Aa � 14 = 09−3# were
examined[ In order to validate the numerical calculations\
we compare the model|s results\ considering only the
smooth ðsolid "1#Ł subjected to a uniform heat ~ux
"uncoupled case] UC# to those of the analytical solution
ð05Ł "see the Appendix#[

It has been shown that the domain of calculation could
be reduced as a function of V�[ The iterative procedure\
used for the resolution of the discretized equations\ is
initialized by means of a one!directional analytical model[
This allowed for a signi_cant reduction of the com!
putation time[

The choice of the appropriate mesh is important for
this kind of problem[ For this purpose\ a study of the
mesh is undertaken[ Moreover\ the in~uence of asperity
elongation in terms of the thermal contact resistance is
addressed[

1[ Description of the problem and governing equations

The study is based on two sliding bodies "Fig[ 0#[ Body
"0# is rough\ stationary and comprises numerous square!
shaped asperities with height d and width 1l uniformly
distributed over the contact plane "space period!
icity � 1L#[ Body "1# is smooth and moving at a velocity
V[ The heat transfer through the interstitial gap is
assumed to be negligible[ The boundaries of the bodies
are in convective exchange with their surrounding media
at temperature Te[ Heat transfer is three!dimensional and
at steady!state T"x\ y\ z#[ By considering the periodicity
of asperities in the x!direction and the symmetry of heat
transfer in the y!direction\ the studied domain was limited
to an elementary cell "Fig[ 1#[ Using notations of this
_gure and noting that j refers to the subscript of the
body " j � 0 or 1#\ equations governing heat transfer in a
steady!state could be as follows]

Heat equation]

11Tj

1x1
¦

11Tj

1y1
¦

11Tj

1z1
j

−
V
aj

1Tj

1x
� 9 "V � 9 for body 0#[

"0#

Periodicity and symmetry conditions]

Tj"−L\ y\ zj# � Tj"L\ y\ zj# "periodicity# "1#

1Tj

1x
"−L\ y\ zj# �

1Tj

1x
"L\ y\ zj# "periodicity# "2#

1Tj

1y
"x\ 9 or L\ zj# � 9 "symmetry#[ "3#

Boundary conditions]

1T0

1x
"x\ y\ z0# � 9 "=x= � l\ 9¾ y ¾ l\ 9¾ z0 ¾ d# "4#

1T0

1y
"x\ y\ z0# � 9 "=x= ¾ l\ y � l\ 9¾ z0 ¾ d# "5#

−kj

1Tj

1zj

"x\ y\ ej# � hj"T"x\ y\ ej#−Tej
# "6#

1T0

1z0

"x\ y\ d# �

1T1

1z1

"x\ y\ 9#� 9 6
l ¾ =x= ¾ L\ 9 ¾ y ¾ L

=x= ¾ l\ l ¾ y ¾ L
[ "7#

Contact equations "at Ar#

T0"x\ y\ 9#� T1"x\ y\ 9# "=x= ¾ l\ 9¾ y ¾ l# "8#

qc � q0"x\ y#¦q1"x\ y# "=x= ¾ l\ 9¾ y ¾ l# "09#

where
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Fig[ 0[ Geometrical model[

qj"x\ y# � −kj

1Tj

1zj

"x\ y\ 9#[ "00#

In equation "09#\ the generated heat ~ux qc is assumed to
be uniform at the real contact area[ This is not a limitation
of the model[

2[ Methodology of the numerical solution

For both bodies\ heat transfer is three!dimensional up
to the depths e?j "limits of the constriction zone# and
becomes one!dimensional beyond that "Fig[ 2#[ There!
fore\ the domain of calculation is limited to the con!
striction zone and the remaining body is replaced with
an equivalent thermal conductance h?j]

h?j �
0

0
hj

¦
ej−e?j

kj

"01#

e?1 value is correlated to V�]

e?1 �
4L

zV�
"V� × 5[2# "02#

when V� ¾ 5[2 then e?j is assumed to be equal to 1L[
Heat transfer inside the reduced domain of bodies are

calculated numerically\ using the _nite volume method
ð06Ł[ Numerical equations are solved by the relaxation
iterative method "SOR#[

T"n¦0#
i\j\k � "0−v#T"n#

i\j\k¦vT½ i\j\k "03#

where superscripts "n# and "n¦0# represent successive
iterates of the temperature solution and T½ i\j\k the partially
corrected temperature between "n# and "n¦0# iterates\
and v the relaxation parameter[

The criterion for convergence can be speci_ed as the
absolute convergence criterion in the form]

=T"n¦0#
i\j\k −T"n#

i\j\k= ¾ res "04#

where res is the residue[
The convective term 1T1:1x in equation "0# is descre!
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Fig[ 1[ Studied elementary cell[

tized by an upwind di}erencing scheme because V�
"equivalent to Peclet number# is high[ In the case\ v must
be less than 0[ For the _xed body\ 0 ³ v ³ 1[

The value of the real area of contact is generally very
small compared to that of the apparent area of contact[
The mesh structure was adopted to be equal in both x!
and y!directions\ it comprises two zones "Fig[ 3#] a thin
mesh at the vicinity of the contact and a larger one else!
where[ In the z!direction\ a uniform mesh was adopted[
A mesh study is given in Section 3[0[

Because the moving body homogenizes the thermal
_eld in the direction of the displacement\ the iterative

procedure was initialized by using a one!dimensional
model T"z#[ Figure 4 provides the analogical scheme rep!
resenting the above model whose solution is given as
follows]

Tj"z# � Tej
¦QjRj"z# "05#

where

Q0 �
R1

R0¦R1

Qc¦
Te1−Te0

R0¦R1

"06#

Q1 �
R1

R0¦R1

Qc¦
Te0−Te1

R0¦R1

"07#
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Fig[ 2[ Reduction of the modeled domain[

Rj"z# �
z

kjAa

\ Rj �
ej

kjAa

¦
0

hjAa

[ "08#

This allowed for a signi_cant reduction in the com!
putation time[ In fact\ the results have shown that iterates
are reduced by 49) when compared to an initialization
using a uniform temperature Tej

[

3[ Results and discussion

3[0[ In~uence of the mesh

The accurate determination of local temperatures\
consequently of constriction resistances\ for the examined
moving contacts and particularly for small values of o\
necessitates a meticulous attention in the choice of the
mesh[ For these purposes\ a study consisting of choosing
the appropriate mesh is undertaken[

The grid numbers "Nit\ Nil and Nk# are determined by
comparing the values of the dimensionless constriction
resistance cc\ provided by the numerical model for a
smooth body subjected to a uniform ~ux at the real
contact area\ to those of any analytical model ð05Ł "see
the Appendix#[ Figure 5 provides the result of the com!
parison for o � 9[0\ and V� � 9 and 19[ For the same
accuracy\ this _gure shows that the necessary number of
grids for V� � 19 is less than the one for V� � 9[ It is
worth noting that from Nk � 29\ variations of the relative
error become negligible and that the couple "Nit � 19\

Nil � 09# _ts well[ We have adopted these values for what
follows[ The number of meshes within the asperity is set
to Na � 4[

3[1[ Temperatures

The local temperatures are very important for tri!
bology "friction\ wear# and mechanical studies "stress\
strain\ [ [ [#[ In order to validate the numerical calcu!
lations\ we have studied the particular case where solid
"1# is studied separately\ subjected to uniform heat ~uxes\
and for which the analytical solution can be deduced
from ref[ ð05Ł "see the Appendix#[

The comparison of dimensionless surface temperatures
"at the abscissa y � 9# for o � 9[0 and V� � 9\ 59\ 199
"Fig[ 6#\ shows that the results are in agreement[ The
peak of dimensionless surface temperature decreases with
increase in velocity and moves towards the exit of the
contact[

The isothermal line inside body "1# "=x= ¾ L\
y � 9\9 ¾ z1 ¾ e?1#\ for o � 9[0 and V� � 9\ 19\ 59\
and 099 were represented in Fig[ 7[ These _gures
make into evidence the thermal gradients that could play
an important role in the thermomechanical aspects[ It is
worthwhile to mention that the ~attening of temperatures
becomes more important with the increase in velocity[
For the above velocities\ the temperature was completely
~attened at the limit depth of the reduced domain e?1[
When V� value increases\ the peak of the dimensionless
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Fig[ 3[ Mesh structure[

Fig[ 4[ Initialization procedure[

surface temperature decreases at the vicinity of the real
contact area and the isothermal lines in the y!direction
are ~attened "Fig[ 8#[

3[2[ Thermal contact resistance

Considering only solid media\ the thermal contact
resistance Rc of the studied geometry can be written as
follows]

Rc � Rcs0¦Ra0¦Rcs1 "19#

where

Rcs0 �

0
Ar ggAr

T0"x\ y\ d# dx dy−
0
Aa ggAa

T0"x\ y\ d# dx dy

ggAr

q0"x\ y\ d# dx dy

"10#

Rcs1 �

0
Ar ggAr

T1"x\ y\ 9# dx dy−
0
Aa ggAa

T1"x\ y\ 9# dx dy

ggAr

q1"x\ y\ 9# dx dy

"11#

Ra0 �

0
Ar ggAr

"T0"x\ y\ 9#−T0"x\ y\ d## dx dy

ggAr

q0"x\ y\ 9# dx dy
[ "12#

The thermal constriction resistance Rcs is the ratio of the
di}erence between average temperatures of the real "Ar#
and apparent "Aa# contact area\ and the ~ux[
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Fig[ 5[ In~uence of the mesh[

Fig[ 6[ Dimensionless surface temperature[
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Fig[ 7[ Isothermal lines inside body "1# for o � 9[0[

To illustrate the results\ the dimensionless constriction
resistance cc is used]

cc � RcskzAr[ "13#

The expression of cc in terms of o and V�\ for a smooth
single body subjected to square!shaped uniform heat
~uxes sources\ is given by ð05Ł "see the Appendix#[

Considering only solid "1#\ the results of cc1 as a func!
tion of o and V� are in agreement with those of the
analytical solution "Fig[ 09#[ Small values of o down to
9[94\ for the mesh adopted in Section 3[0\ are examined[
The cc1 value decreases with the increase in o and V�[

Table 0 illustrates the comparison of cc0 values\ for
body "0#\ in terms of o "V� � 9#[ In this case\ equation
"A0# is identical to that given by ð8Ð00Ł[ The numerical
model provides cc values slightly less than those of the
analytical solution[ This can be explained by the fact that
the analytical solution uses a uniform ~ux distribution
while in the numerical model the curve of temperature in
terms of "x\ y# at z � d becomes ~atter[ It is known that
the constriction is lower in the case of uniform tempera!
ture[

We considered the two bodies in actual contact
"coupled case] C# in order to determine the dimensionless
constriction resistance[ The latter is then compared to
the one where each solid is considered separately with a
uniform heat ~ux at the real contact area "uncoupled
case] UC#[ The results show that the obtained constriction
for the smooth body is less than that for the uncoupled
case "Table 1#[ The di}erence is about 3Ð4) at V� � 9
and decreases with increase of velocity[

3[3[ In~uence of asperity elon`ation

The results of the dimensionless constriction resistance
are compared to those of a two!dimensional numerical
model ð07Ł based on two bodies in relative motion[ The
_rst is smooth and moving at velocity V\ the second is
rough and _xed[ The roughness is schematized by strip!
shaped asperities perpendicular to the displacement[
Table 2 shows the results of this comparison\ for equal
ratios of Ar:Aa and dimensionless velocity "V�#[ As pre!
dicted\ the two!dimensional dimensionless constriction
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Fig[ 8[ Surface temperature at the contact plane of body "1#[

resistance is two to four times less than the three!dimen!
sional one for the studied values of o and V�[

4[ Conclusions

A three!dimensional numerical model was developed
to calculate the local temperatures and the thermal con!
tact resistance between two bodies in relative motion[

In order to reduce the computation time\ the domain
of calculation was limited to the constriction zone and
the iterative procedure was initialized by means of a one!
directional analytical model[

It is worth mentioning that the numerical treatment of
such a problem requires meticulous attention[ Particu!
larly\ the mesh size Dz is proportional to 0:zV�[

It has been shown that] "i# the thermal contact resist!

ance decreases while both parameters used "o and V�#
increase\ "ii# for coupled bodies\ the thermal constriction
is slightly less than that for uncoupled bodies[

For the same values of o and V�\ the three!dimensional
constriction resistance is two to four times more than the
two!dimensional one[

Appendix

The analytical solution for a smooth semi!in_nite body
subjected to numerous square!shaped heat sources\ mov!
ing at velocity V is proposed in ð05Ł[

The dimensionless constriction resistance is given as
follows]
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Fig[ 09[ Dimensionless constriction resistance evolution vs[ o and V�[

Table 0
Comparison of cc0 values with those of the analytical solution ð05Ł

cc0

o � 9[94 o � 9[0 o � 9[04 o � 9[1

Equation "A0# Num[ Equation "A0# Num[ Equation "A0# Num[ Equation "A0# Num[

9[3310 9[3984 9[3001 9[2769 9[8794 9[2478 9[2499 9[2169

Table 1
Coupling e}ect on the dimensionless constriction resistance

cc1

o � 9[94 o � 9[0 o � 9[04 o � 9[1

V� C UC C UC C UC C UC

9 9[3005 9[3222 9[2789 9[3958 9[2505 9[2660 9[2223 9[2358
19 9[2511 9[2725 9[2147 9[2275 9[1896 9[1874 9[1423 9[1513
59 9[2980 9[2126 9[1420 9[1484 9[1040 9[1081 9[0807 9[0839

099 9[1616 9[1686 9[1057 9[1087 9[0779 9[0785 9[0580 9[0699



B[ Salti\ N[ Laraqi:Int[ J[ Heat Mass Transfer 31 "0888# 1252Ð1263 1262

Table 2
In~uence of asperity elongation

o � 9[0 o � 9[04 o � 9[1

V� c1!D c2!D c1!D c2!D c1!D c2!D

9 9[0186 9[3958 9[0513 9[2660 9[0719 9[2358
19 9[9845 9[2275 9[0086 9[1874 9[0141 9[1513
59 9[9657 9[1484 9[9732 9[1081 9[9700 9[0839

099 9[9554 9[1087 9[9561 9[0785 9[9518 9[0699

cc � s
�

p�0

sin1"ppo#

z1o"pp#2X
0

z0¦"V�:1pp#1
¦

0

0¦"V�:1pp#1

¦ s
�

n�0

sin1"npo#

o"np#2
¦ s

�

p�0

s
�

n�0

z1 sin1"ppo# sin1"npo#

j2"pp#1"np#1z"pp#1¦"np#1

×X 0

z0¦ðV�pp:1ð"pp#1¦"np#1ŁŁ1

¦
0

0¦ðV�pp:1ð"pp#1¦"np#1ŁŁ1
[ "A0#

The dimensionless surface temperature for a semi!in_nite
body is given as follows]

T�"j\ m\ 9#� B99¦ s
�

n�0

1o sin "npo# cos "npm#

"np#1

¦ s
�

p�0

1o sin "ppo# cos "ppj−gp9:1#

"pp#1 3z0¦"V�:1pp#1
¦ s

�

p�0

s
�

n�0

3 sin "ppo# sin "npo# cos "npm# cos "ppj−gpn:1#

"pp#"np#z"pp#1¦"np#1 3z0¦ðV�pp:1ð"pp#1¦"np#1ŁŁ1

"A1#

where

j � x:L\ m � y:L\ T� � "T−Te#:"qL:k#\

gp9 � a tan "V�:1pp#

gpn � a tan "V�pp:1""pp#1¦"np#1##\ B99 � Cst[ "A2#

In order to determine the temperatures within the studied
_nite medium\ B99 is obtained by applying a Fourier
boundary condition at the limit of the constriction zone
"z � e?1#\ beyond which the temperature is linear as a
function of z]

B99 � o1"0:Bi?1¦e?1�# "A3#

where

e?1� � e?1:L\ Bi?1 � h?1L:k[ "A4#
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