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Abstract

A three-dimensional numerical model using the finite volume method was developed to calculate the steady-state
temperatures and the thermal contact resistance between two sliding bodies: one is rough and stationary, the other is
smooth and moving at a velocity V. The roughness is represented by square-shaped asperities characterized by a
parameter ¢. Heat transfers through interstitial gaps are not taken into account. The numerical methodology was
particularly studied in order to reduce the computation time and obtain accurate results. This model was validated by
comparison of results with those of an analytical solution. © 1999 Elsevier Science Ltd. All rights reserved.
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Nomenclature

A, apparent contact area of an elementary cell
A, real contact area of an elementary cell

e width

¢’ width of the modeled domain

h heat convection coefficient

" heat conductance

k  thermal conductivity

[ half-width of the real contact area
half-width of the apparent contact area
number of meshes

heat flux per unit area

heat flux ( = ¢(2/)%)

thermal resistance

temperature

T. ambient temperature

T* dimensionless temperature (=(7— 7.)(¢L/k))
V' sliding velocity

V* dimensionless velocity (= V(2L/x))

X, Y,z space coordinates.

NXRQO= =~

* Corresponding author.

Greek symbols

o thermal diffusivity

0 asperity height

A space step

¢ relative contact size (=./A4,/A4, = /L)

Y. dimensionless constriction resistance (= chk\//Tr)
o relaxation parameter.

Subscripts

a asperity

¢ contact

cs constriction

i, j, k indexes for meshes in the x-, y-, z-directions,
respectively

1 large

t thin

1,2 body (1) or (2).

Abbreviations

2-D  two-dimensional
3-D three-dimensional
C coupled bodies

UC uncoupled bodies.
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1. Introduction

Temperature is an important parameter for problems
of friction [1, 2]. The investigation of temperatures by
analytical solutions or numerical models depends on the
adopted equations for characterizing the heat transfer at
the body/body contact. Experimental studies [3-5] con-
cerning dry friction, have shown that there exists a dis-
continuity of temperature at the interface of sliding
bodies. This jump of temperature is a conclusive indi-
cation of the presence of a thermal contact resistance R..
For stationary solids R, has been widely investigated [6—
12]. The relative mobility of bodies modifies the con-
striction of the heat flux lines and subsequently R, value.
Experimental studies [4, 5, 13] show that R, decreases
with the increase of velocity. This tendency has been
confirmed by analytical solutions [14, 15] where a semi-
infinite solid subjected to heat sources is considered.
Another analytical solution, based on a semi-infinite
body subjected to numerous rectangular or squared heat
sources is also proposed [16].

The proposed analytical solutions consider a single
smooth body subjected to a uniform heat flux. In practice,
heat flux distribution at the real contact area is non uni-
form due to the presence of the asperity of the other solid.

In this paper, a three-dimensional numerical model
that considers two bodies in sliding contact was
developed. The modeled geometry consists of two bodies:
one is smooth and moving at a velocity V, the other is
fixed and comprises numerous asperities shaped as squa-
res which are uniformly distributed over the contact
plane. For the same values of the real and apparent
contact area, a square-shaped asperity is equivalent to a
circular one [11].

In this study, we are interested in the constriction
phenomenon within solids, heat transfers through inter-
stitial gaps are not taken into account. The steady-state
temperatures and dimensionless thermal contact resist-
ance Y, were calculated in terms of two parameters
characterizing the surface (¢) and the displacement (V*).
Small values of ¢ down to 0.05 (4,/4, = 25-107*) were
examined. In order to validate the numerical calculations,
we compare the model’s results, considering only the
smooth [solid (2)] subjected to a uniform heat flux
(uncoupled case: UC) to those of the analytical solution
[16] (see the Appendix).

It has been shown that the domain of calculation could
be reduced as a function of V*. The iterative procedure,
used for the resolution of the discretized equations, is
initialized by means of a one-directional analytical model.
This allowed for a significant reduction of the com-
putation time.

The choice of the appropriate mesh is important for
this kind of problem. For this purpose, a study of the
mesh is undertaken. Moreover, the influence of asperity
elongation in terms of the thermal contact resistance is
addressed.

2. Description of the problem and governing equations

The study is based on two sliding bodies (Fig. 1). Body
(1) is rough, stationary and comprises numerous square-
shaped asperities with height 6 and width 2/ uniformly
distributed over the contact plane (space period-
icity = 2L). Body (2) is smooth and moving at a velocity
V. The heat transfer through the interstitial gap is
assumed to be negligible. The boundaries of the bodies
are in convective exchange with their surrounding media
at temperature 7. Heat transfer is three-dimensional and
at steady-state 7(x, y, z). By considering the periodicity
of asperities in the x-direction and the symmetry of heat
transfer in the y-direction, the studied domain was limited
to an elementary cell (Fig. 2). Using notations of this
figure and noting that j refers to the subscript of the
body (j = 1 or 2), equations governing heat transfer in a
steady-state could be as follows:

Heat equation:

o*T, T, o*T, VoT,
1y C C 2% g (1 =0 for body 1).

x> 9t 0z % ox

1)
Periodicity and symmetry conditions:
T(—L,y,z) = T(L,y,z) (periodicity) (@)
oT; oT; C
(= Loy,z) = 5 (Loyz)  (periodicity) 3)
or
5()6,0 orL,z) =0 (symmetry). 4)

Boundary conditions:

T
6x‘(x,y,zl)=0 (M=L0<y<L0<z <9) (5)
oT,
oy 1) =0 (M <Ly=10<z<9) ©)
oT;
_k/aizl(xa Y, e/') = h/-(T(X, Vs 6‘,') - Te/-) (7)
J
oT
(o) =
Z)
oT I<IXI<SL, 0<y<L
?im»®20{ " YSE g
0z, Ixl <1, I<y<L
Contact equations (at A4,)
T\(x,»,0) = To(x,»,0) (x| <LO0<y<) ©))
4= q:(x,»)+q2(x, ) (XI<LO<y<)) (10)

where
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h2
Te 5

Fig. 1. Geometrical model.

oT,
q(x,y) = —k/afzf(x,y, 0). 1n
J

In equation (10), the generated heat flux ¢, is assumed to
be uniform at the real contact area. Thisis not a limitation
of the model.

3. Methodology of the numerical solution

For both bodies, heat transfer is three-dimensional up
to the depths e} (limits of the constriction zone) and
becomes one-dimensional beyond that (Fig. 3). There-
fore, the domain of calculation is limited to the con-
striction zone and the remaining body is replaced with
an equivalent thermal conductance /:

1
th (12)
h; k;

]

¢, value is correlated to V*:

eh=—— (V*>63) (13)

when I* < 6.3 then e} is assumed to be equal to 2.

Heat transfer inside the reduced domain of bodies are
calculated numerically, using the finite volume method
[17]. Numerical equations are solved by the relaxation
iterative method (SOR).

TG = (1) T+ T, (14)

where superscripts (n) and (n+ 1) represent successive
iterates of the temperature solution and 7, the partially
corrected temperature between (1) and (n+1) iterates,
and o the relaxation parameter.

The criterion for convergence can be specified as the
absolute convergence criterion in the form:

T35 — Tk

< res (15)

where res is the residue.
The convective term 07,/0x in equation (1) is descre-
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Fig. 2. Studied elementary cell.

tized by an upwind differencing scheme because V*
(equivalent to Peclet number) is high. In the case, ® must
be less than 1. For the fixed body, 1 < ®w < 2.

The value of the real area of contact is generally very
small compared to that of the apparent area of contact.
The mesh structure was adopted to be equal in both x-
and y-directions, it comprises two zones (Fig. 4): a thin
mesh at the vicinity of the contact and a larger one else-
where. In the z-direction, a uniform mesh was adopted.
A mesh study is given in Section 4.1.

Because the moving body homogenizes the thermal
field in the direction of the displacement, the iterative

procedure was initialized by using a one-dimensional
model 7(z). Figure 5 provides the analogical scheme rep-
resenting the above model whose solution is given as
follows:

T(z) = T+ Q;R(2) (16)
where
RZ T(’Z_ Tel
= . 17
Ql R1+R2Qt+ R1+R2 ( )
R, T.-T,
= . 18
QZ R[ +R2 Qt. R1+R2 ( )
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Fig. 3. Reduction of the modeled domain.

z,
by
Te /\/
€
-L: 0 AL x
-l +1
€2
V
® -
é Te 2
h,
Z,
z e 1
R(z) =— + o (19)

R = .
kA, VT kA, " A,

This allowed for a significant reduction in the com-
putation time. In fact, the results have shown that iterates
are reduced by 50% when compared to an initialization
using a uniform temperature 7.

4. Results and discussion
4.1. Influence of the mesh

The accurate determination of local temperatures,
consequently of constriction resistances, for the examined
moving contacts and particularly for small values of &,
necessitates a meticulous attention in the choice of the
mesh. For these purposes, a study consisting of choosing
the appropriate mesh is undertaken.

The grid numbers (N,, N;; and N,) are determined by
comparing the values of the dimensionless constriction
resistance ., provided by the numerical model for a
smooth body subjected to a uniform flux at the real
contact area, to those of any analytical model [16] (see
the Appendix). Figure 6 provides the result of the com-
parison for ¢ = 0.1, and V* = 0 and 20. For the same
accuracy, this figure shows that the necessary number of
grids for V* = 20 is less than the one for V* = 0. It is
worth noting that from N, = 30, variations of the relative
error become negligible and that the couple (I, = 20,

N; = 10) fits well. We have adopted these values for what
follows. The number of meshes within the asperity is set
to N, =5.

4.2. Temperatures

The local temperatures are very important for tri-
bology (friction, wear) and mechanical studies (stress,
strain,...). In order to validate the numerical calcu-
lations, we have studied the particular case where solid
(2) is studied separately, subjected to uniform heat fluxes,
and for which the analytical solution can be deduced
from ref. [16] (see the Appendix).

The comparison of dimensionless surface temperatures
(at the abscissa y = 0) for ¢ = 0.1 and V* = 0, 60, 200
(Fig. 7), shows that the results are in agreement. The
peak of dimensionless surface temperature decreases with
increase in velocity and moves towards the exit of the
contact.

The isothermal line inside body (2) (|x|<L,
y=00<z,<¢)), for e=0.1 and V*=0, 20, 60,
and 100 were represented in Fig. 8. These figures
make into evidence the thermal gradients that could play
an important role in the thermomechanical aspects. It is
worthwhile to mention that the flattening of temperatures
becomes more important with the increase in velocity.
For the above velocities, the temperature was completely
flattened at the limit depth of the reduced domain e5.
When V* value increases, the peak of the dimensionless
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RcsZ = : -
surface temperature decreases at the vicinity of the real JL 9%, y, 0) dxdy
contact area and the isothermal lines in the y-direction
are flattened (Fig. 9). (22)
4.3. Thermal contact resistance A; JJ (T\(x,y,0)=T\(x,y,0))dxdy
Ry=—"" (23)

Considering only solid media, the thermal contact
resistance R, of the studied geometry can be written as
follows:

Rc = Rcsl + Ra] + Rcsz (20)

where

J\J\ ql(xa Vs 0) dx dy
Ar

The thermal constriction resistance R is the ratio of the
difference between average temperatures of the real (4,)
and apparent (4,) contact area, and the flux.
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Fig. 8. Isothermal lines inside body (2) for ¢ = 0.1.

To illustrate the results, the dimensionless constriction
resistance i, is used:

Ve = Rk /A, (24

The expression of ¥ in terms of ¢ and V*, for a smooth
single body subjected to square-shaped uniform heat
fluxes sources, is given by [16] (see the Appendix).

Considering only solid (2), the results of i, as a func-
tion of ¢ and V* are in agreement with those of the
analytical solution (Fig. 10). Small values of ¢ down to
0.05, for the mesh adopted in Section 4.1, are examined.
The ., value decreases with the increase in ¢ and V*.

Table 1 illustrates the comparison of ., values, for
body (1), in terms of ¢ (V* = 0). In this case, equation
(A1) is identical to that given by [9-11]. The numerical
model provides i, values slightly less than those of the
analytical solution. This can be explained by the fact that
the analytical solution uses a uniform flux distribution
while in the numerical model the curve of temperature in
terms of (x, y) at z = 6 becomes flatter. It is known that
the constriction is lower in the case of uniform tempera-
ture.

We considered the two bodies in actual contact
(coupled case: C) in order to determine the dimensionless
constriction resistance. The latter is then compared to
the one where each solid is considered separately with a
uniform heat flux at the real contact area (uncoupled
case: UC). The results show that the obtained constriction
for the smooth body is less than that for the uncoupled
case (Table 2). The difference is about 4-5% at V* =0
and decreases with increase of velocity.

4.4. Influence of asperity elongation

The results of the dimensionless constriction resistance
are compared to those of a two-dimensional numerical
model [18] based on two bodies in relative motion. The
first is smooth and moving at velocity V, the second is
rough and fixed. The roughness is schematized by strip-
shaped asperities perpendicular to the displacement.
Table 3 shows the results of this comparison, for equal
ratios of A4,/4, and dimensionless velocity (V*). As pre-
dicted, the two-dimensional dimensionless constriction
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Fig. 9. Surface temperature at the contact plane of body (2).

resistance is two to four times less than the three-dimen-
sional one for the studied values of ¢ and V*.

5. Conclusions

A three-dimensional numerical model was developed
to calculate the local temperatures and the thermal con-
tact resistance between two bodies in relative motion.

In order to reduce the computation time, the domain
of calculation was limited to the constriction zone and
the iterative procedure was initialized by means of a one-
directional analytical model.

It is worth mentioning that the numerical treatment of
such a problem requires meticulous attention. Particu-
larly, the mesh size Az is proportional to 1 /\/ﬁ.

It has been shown that: (i) the thermal contact resist-

ance decreases while both parameters used (¢ and V*)
increase, (ii) for coupled bodies, the thermal constriction
is slightly less than that for uncoupled bodies.

For the same values of ¢ and V'*, the three-dimensional
constriction resistance is two to four times more than the
two-dimensional one.

Appendix

The analytical solution for a smooth semi-infinite body
subjected to numerous square-shaped heat sources, mov-
ing at velocity ¥ is proposed in [16].

The dimensionless constriction resistance is given as
follows:
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Table 1
Comparison of ¥, values with those of the analytical solution [16]
Yo
e=0.05 e=0.1 e=0.15 e=02
Equation (A1) Num. Equation (A1) Num. Equation (A1) Num. Equation (A1) Num.
0.4421 0.4095 0.4112 0.3870 0.9805 0.3589 0.3500 0.3270
Table 2
Coupling effect on the dimensionless constriction resistance
Ve
e=0.05 e=0.1 e=0.15 =02
V* C uc C uc C uc C uc
0 0.4116 0.4333 0.3890 0.4069 0.3616 0.3771 0.3334 0.3469
20 0.3622 0.3836 0.3258 0.3386 0.2907 0.2985 0.2534 0.2624
60 0.3091 0.3237 0.2531 0.2595 0.2151 0.2192 0.1918 0.1940
100 0.2727 0.2797 0.2168 0.2198 0.1880 0.1896 0.1691 0.1700
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Table 3
Influence of asperity elongation
e=0.1 e=0.15 e=0.2
y* Vb Vi Vap Vsp Vap Vb
0 0.1297 0.4069 0.1624 0.3771 0.1820 0.3469
20 0.0956 0.3386 0.1197 0.2985 0.1252 0.2624
60 0.0768 0.2595 0.0843 0.2192 0.0811 0.1940
100 0.0665 0.2198 0.0672 0.1896 0.0629 0.1700
b $ S 1 B 1 where
4 S2em)? N 1+ (V¥ 2pn)> 1+ (V*/2pn)’ ey* =ey/L, Bir = hyLjk. (AS5)

N i sin*(nme) & & ﬁ sin*(pne) sin’(nne)
=1oe(nm)’ PSS E(pr)X(nn)/ (pr)? + (nm)?
/ 1

X

S+ pr/2[(pr)? + (nm)

1
+ .
L+ [V*pr/2[(pm)* + (nm)])*

(AT)

The dimensionless surface temperature for a semi-infinite
body is given as follows:

0

2¢ sin (nme) cos (nmp)
T*(E.p.0) = Boy+ Y. :
n=1

(nm)*

0

2

p=1

2esin (pre) cos (prE—70/2) | & ¥

(pm)* /14 (V*[2pm)*
4sin (pme) sin (nme) cos (nmp) cos (prné —7,,/2)

(pr)(nm)y/ (pm)* + (nm)* */ 1+ [V*pr/2(pm)” + (nm) ]

p=1n=1

(A2)
where
E=x/L, p=y/L, T*=(T-T)/(qL[k),
7p0 = atan (V*/2pr)
o = atan (V*pr/2((pr)* + (nm)?)), Boo = Cst.  (A3)

In order to determine the temperatures within the studied
finite medium, B,, is obtained by applying a Fourier
boundary condition at the limit of the constriction zone
(z = ¢3), beyond which the temperature is linear as a
function of z:

By = 82(1/31'/2"'3/2*) (A4)
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